RANCANG BANGUN PENDETEKSI TINGKAT KEHIJAUAN WARNA DAUN PADI MENGGUNAKAN SENSOR WARNA TCS230
Abstract
Full Text:
PDFReferences
Adi, C. P., Fransiskha, T., Panjaitan, P., & Herdiansyah, Y. (2021). Pembuatan prototipe penentu kesegaran ikan patin Berbasis sensor TCS 230. Jurnal Airaha, 10(1), 123 – 130.
Furuya, S. (1987). Growth diagnosis of rice plants by means of leaf color. JARQ (Japan), 20(3), 147–152.
Gani, A., Penelitian, B. B., & Padi, T. (2020). Bagan Warna Daun (BWD) Pesan kunci. Balai Besar Penelitian Tanaman Padi, 1.
Ge, H., Xiang, H., Ma, F., Li, Z., Qiu, Z., Tan, Z., & Du, C. (2021). Estimating plant nitrogen concentration of rice through fusing vegetation indices and color moments derived from UAV-RGB images. Remote Sensing, 13(9). https://doi.org/10.3390/rs13091620
Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors (Switzerland), 13(8), 10823–10843. https://doi.org/10.3390/s130810823
Ramadlan, R. D., Alawiy, M. T., & Melfazen, O. (2022). Sistem Pendeteksi Kualitas Buah Naga Berbasis Iot (Internet of Things). Science Electro. http://riset.unisma.ac.id/index.php/jte/article/view/14774%0Ahttp://riset.unisma.ac.id/index.php/jte/article/viewFile/14774/11240
Sari, E. I., Anggraini, F., Hartama, D., & Kirana, I. O. (2021). Prototype Alat Pengecekan dan Penyortir Kesegaran Cabai Berdasarkan Warna Menggunakan Sensor Tcs230 Berbasis Arduino. BEES : Bulletin of Electrical and Electronics Engineering, 2(1), 1–6.
Sihombing, P., Tommy, F., Sembiring, S., & Silitonga, N. (2019). The Citrus Fruit Sorting Device Automatically Based on Color Method by Using Tcs320 Color Sensor and Arduino Uno Microcontroller. Journal of Physics: Conference Series, 1235(1). https://doi.org/10.1088/1742-6596/1235/1/012064
Sulastri, M. J., Sulistyaningrum, D. R., & Nurhadi, H. (2021). Detection of Nutrient Deficiency in Rice Plants Based on Leaf Image. 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), 143–148. https://doi.org/10.1109/ICAMIMIA54022.2021.9807811
Wahid, A. S. (2003). Peningkatan efisiensi pupuk nitrogen pada padi sawah dengan metode bagan warna daun. Jurnal Litbang Pertanian, 22(4), 156–161.
Xu, G., Zhang, F., Shah, S. G., Ye, Y., & Mao, H. (2011). Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognition Letters, 32(11), 1584–1590. https://doi.org/10.1016/j.patrec.2011.04.020
Xu, M., Liu, R., Chen, J. M., Liu, Y., Shang, R., Ju, W., Wu, C., & Huang, W. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224(May 2018), 60–73. https://doi.org/10.1016/j.rse.2019.01.039
Yang, W. H., Peng, S., Huang, J., Sanico, A. L., Buresh, R. J., & Witt, C. (2003). Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal, 95(1), 212–217. https://doi.org/10.2134/agronj2003.2120
Zhao, K., Ye, Y., Ma, J., Huang, L., & Zhuang, H. (2021). Detection and dynamic variation characteristics of rice nitrogen status after anthesis based on the rgb color index. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091739
Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2018). Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060824
DOI: https://doi.org/10.31884/jtt.v8i2.435
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 JTT (Jurnal Teknologi Terapan)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)