Hidayat Hidayat, Yazid Baihaqy


Fertilization of rice plants according to the dose of their needs is one of the important things to produce an optimal rice harvest. Giving less or more fertilizer can cause rice plants not to grow optimally and even cause crop failure. The need for fertilizer doses can be determined by changing the color of the rice leaves using the Leaf Color Chart (LCC). However, obstacles in the field are challenging for novice farmers to predict fertilizer needs just by looking at the color of the leaves with the naked eye. The application of information technology is expected to help farmers, especially novice farmers, in measuring the dose of fertilizer needed for rice plants. The technology that will be applied is an electronic device that can detect the color of rice leaves and provide information for users from the measurement results through an android application on a smartphone device. The electronics modules used are the TCS320 color sensor module which functions to detect the color of objects, the Arduino UNO microcontroller module which contains ATMega128 as a data processor, and the Bluetooth module as a communication liaison between the microcontroller device and the android application on the smartphone. The test results show that the built device can function properly. All tested leaves can be classified according to the greenish level of the leaf color.

Full Text:



Adi, C. P., Fransiskha, T., Panjaitan, P., & Herdiansyah, Y. (2021). Pembuatan prototipe penentu kesegaran ikan patin Berbasis sensor TCS 230. Jurnal Airaha, 10(1), 123 – 130.

Furuya, S. (1987). Growth diagnosis of rice plants by means of leaf color. JARQ (Japan), 20(3), 147–152.

Gani, A., Penelitian, B. B., & Padi, T. (2020). Bagan Warna Daun (BWD) Pesan kunci. Balai Besar Penelitian Tanaman Padi, 1.

Ge, H., Xiang, H., Ma, F., Li, Z., Qiu, Z., Tan, Z., & Du, C. (2021). Estimating plant nitrogen concentration of rice through fusing vegetation indices and color moments derived from UAV-RGB images. Remote Sensing, 13(9). https://doi.org/10.3390/rs13091620

Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R. V. (2013). A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors (Switzerland), 13(8), 10823–10843. https://doi.org/10.3390/s130810823

Ramadlan, R. D., Alawiy, M. T., & Melfazen, O. (2022). Sistem Pendeteksi Kualitas Buah Naga Berbasis Iot (Internet of Things). Science Electro. http://riset.unisma.ac.id/index.php/jte/article/view/14774%0Ahttp://riset.unisma.ac.id/index.php/jte/article/viewFile/14774/11240

Sari, E. I., Anggraini, F., Hartama, D., & Kirana, I. O. (2021). Prototype Alat Pengecekan dan Penyortir Kesegaran Cabai Berdasarkan Warna Menggunakan Sensor Tcs230 Berbasis Arduino. BEES : Bulletin of Electrical and Electronics Engineering, 2(1), 1–6.

Sihombing, P., Tommy, F., Sembiring, S., & Silitonga, N. (2019). The Citrus Fruit Sorting Device Automatically Based on Color Method by Using Tcs320 Color Sensor and Arduino Uno Microcontroller. Journal of Physics: Conference Series, 1235(1). https://doi.org/10.1088/1742-6596/1235/1/012064

Sulastri, M. J., Sulistyaningrum, D. R., & Nurhadi, H. (2021). Detection of Nutrient Deficiency in Rice Plants Based on Leaf Image. 2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), 143–148. https://doi.org/10.1109/ICAMIMIA54022.2021.9807811

Wahid, A. S. (2003). Peningkatan efisiensi pupuk nitrogen pada padi sawah dengan metode bagan warna daun. Jurnal Litbang Pertanian, 22(4), 156–161.

Xu, G., Zhang, F., Shah, S. G., Ye, Y., & Mao, H. (2011). Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognition Letters, 32(11), 1584–1590. https://doi.org/10.1016/j.patrec.2011.04.020

Xu, M., Liu, R., Chen, J. M., Liu, Y., Shang, R., Ju, W., Wu, C., & Huang, W. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224(May 2018), 60–73. https://doi.org/10.1016/j.rse.2019.01.039

Yang, W. H., Peng, S., Huang, J., Sanico, A. L., Buresh, R. J., & Witt, C. (2003). Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal, 95(1), 212–217. https://doi.org/10.2134/agronj2003.2120

Zhao, K., Ye, Y., Ma, J., Huang, L., & Zhuang, H. (2021). Detection and dynamic variation characteristics of rice nitrogen status after anthesis based on the rgb color index. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091739

Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2018). Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060824

DOI: https://doi.org/10.31884/jtt.v8i2.435


  • There are currently no refbacks.

Copyright (c) 2022 JTT (Jurnal Teknologi Terapan)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

View Stats


 Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)