STUDI NUMERIK KINERJA HEAT SINK BERBASIS ALIRAN DUA FASE DENGAN ETIL ASETAT SEBAGAI ALTERNATIF PENDINGIN CONCENTRATED PHOTOVOLTAICS
Abstract
Concentrated Photovoltaic (CPV) technology offers the potential to enhance solar energy conversion by utilizing light focusing technology to increase the solar irradiation flux received by photovoltaic cells. On the other hand, as the solar energy density increases on a PV cell, the surface temperature of the PV also rises, which results in decreased energy conversion efficiency and the possibility of thermal fatigue. Therefore, a reliable cooling system is required for CPV. This study aims to evaluate the performance of a two-phase flow heat sink with ethyl acetate (C4H8O2) as the working fluid, which has a low boiling point and high heat of vaporization, making it quite effective for heat transfer. The method used is numerical simulation using Computational Fluid Dynamics (CFD) software. The simulation results show that the heat sink heat transfer effectiveness is 86.03%, with a thermal resistance value of 0.0073 . The highest temperature on the solid part is 105 showing an increasing trend but not significantly, while the average fluid temperature tends to remain constant at 55 . This indicates that the evaporation process is able to maintain the heatsink temperature at stable level.
Full Text:
PDFReferences
Alzahrani, M., Shanks, K., & Mallick, T. K. (2021). Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system. Dalam Renewable and Sustainable Energy Reviews (Vol. 138). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110517
Arirohman, I. D., & Hudaya, A. Z. (2019). Perilaku Aliran Stratified Ditinjau dari Karakteristik Visual dan Tebal Film Cairan pada Pipa Horizontal. Journal of Mechanical Design and Testing, 1(2), 86–94. https://doi.org/10.22146/jmdt.v1i2.52810
Arirohman, I. D., Paundra, F., & Yunesti, P. (2021). Studi Karakteristik Pola Aliran Stratified pada Pipa Horizontal 16 mm. Journal of Science, Technology, and Visual Culture, 1(1).
Ceballos, M. A., Pérez-Higueras, P. J., Fernández, E. F., & Almonacid, F. (2023). Tracking-Integrated CPV Technology: State-of-the-Art and Classification. Dalam Energies (Vol. 16, Nomor 15). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en16155605
Ejaz, A., Babar, H., Ali, H. M., Jamil, F., Janjua, M. M., Fattah, I. M. R., Said, Z., & Li, C. (2021). Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustainable Energy Technologies and Assessments, 46. https://doi.org/10.1016/j.seta.2021.101199
Fatchurrohman, N., & Chia, S. T. (2017). Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: Simulation approach. IOP Conference Series: Materials Science and Engineering, 257(1). https://doi.org/10.1088/1757-899X/257/1/012060
Feldman, D., Ramasamy, V., Fu, R., Ramdas, A., Desai, J., & Margolis, R. (2020). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. www.nrel.gov/publications.
Hong, S., Zhang, B., Dang, C., & Hihara, E. (2020). Development of two-phase flow microchannel heat sink applied to solar-tracking high-concentration photovoltaic thermal hybrid system. Energy, 212. https://doi.org/10.1016/j.energy.2020.118739
Huaxu, L., Fuqiang, W., Dong, Z., Ziming, C., Chuanxin, Z., Bo, L., & Huijin, X. (2020). Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy, 194. https://doi.org/10.1016/j.energy.2020.116913
Ibrahim, K. A., Luk, P., & Luo, Z. (2023). Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling. Dalam Energies (Vol. 16, Nomor 6). MDPI. https://doi.org/10.3390/en16062842
Jowkar, S., Shen, X., Morad, M. R., & Olyaei, G. (2023). A numerical modeling of thermal management of high CPV arrays using spray cooling. Applied Thermal Engineering, 230. https://doi.org/10.1016/j.applthermaleng.2023.120823
Moita, A., Moreira, A., & Pereira, J. (2021). Nanofluids for the next generation thermal management of electronics: A review. Symmetry, 13(8). https://doi.org/10.3390/SYM13081362
Nada, S. A., El-Nagar, D. H., & Hussein, H. M. S. (2018). Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Conversion and Management, 166, 735–743. https://doi.org/10.1016/j.enconman.2018.04.035
National Renewable Energy Laboratory. (2024). Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html
NIST. (2025). Ethyl Acetate. https://webbook.nist.gov/cgi/cbook.cgi?ID=C141786&Mask=2#Thermo-Phase
Prakash, A., Kukreja, R., & Kumar, P. (2024). Cooling of PV panel by using PCM and nanofluid-review. https://doi.org/10.1016/j.matpr.2024.05.105
Sadrehaghighi, I. (2021). Mesh Sensitivity & Mesh Independence Study CFD Open Series. https://doi.org/10.13140/RG.2.2.34847.51365/2
Siyabi, I. Al, Shanks, K., Mallick, T., & Sundaram, S. (2017). Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells. AIP Conference Proceedings, 1881(1). https://doi.org/10.1063/1.5001434/793976
Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614–624. https://doi.org/10.1016/j.solener.2008.10.008
Valera, Á., Rodrigo, P. M., Almonacid, F., & Fernández, E. F. (2021). Efficiency improvement of passively cooled micro-scale hybrid CPV-TEG systems at ultra-high concentration levels. Dalam Energy Conversion and Management (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2021.114521
Wang, G., Zhang, Z., & Chen, Z. (2023). Design and performance evaluation of a novel CPV-T system using nano-fluid spectrum filter and with high solar concentrating uniformity. Energy, 267. https://doi.org/10.1016/j.energy.2023.126616
Wu, Z., Xie, G., Gao, F., Chen, W., Zheng, Q., & Liu, Y. (2024). Experimental study of a self-cooling concentrated photovoltaic (CPV) system using thermoelectric modules. Energy Conversion and Management, 299. https://doi.org/10.1016/j.enconman.2023.117858
Yildirim, M. A., Cebula, A., & Sułowicz, M. (2022). A cooling design for photovoltaic panels – Water-based PV/T system. Energy, 256. https://doi.org/10.1016/j.energy.2022.124654
Yuan, F., Yin, Z., Zhao, N., Hu, Y., & Wang, J. (2025). Experimental and numerical analysis of phase change material-based photovoltaic/thermal system with dual-parallel cooling channels. Solar Energy Materials and Solar Cells, 286, 113563. https://doi.org/10.1016/J.SOLMAT.2025.113563
DOI: https://doi.org/10.31884/jtt.v11i2.814
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 JTT (Jurnal Teknologi Terapan)
Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)