PENGUJIAN ALGORITMA YOLO UNTUK DETEKSI CACAT PADA PRODUK HASIL ALUMUNIUM CASTING PADA INDUSTRI OTOMOTIF

Noval Lilansa, Rizqi Aji Pratama, Richard Tanadi, Renold Nindi Kara Natasasmita

Abstract


This research addresses the challenges faced by one of the automotive parts manufacturing plants in Indonesia, in detecting leaks in car components manufactured through aluminum die casting. Existing manual monitoring methods are time-consuming, prone to human error, and pose risks to product quality and operational safety. To overcome these challenges, this research proposes the application of machine learning, specifically computer vision techniques, such as Object Detection to identify and localize gas bubbles using a Leak Tester Machine equipped with a camera sensor equipped with the YOLO algorithm to improve the efficiency of the detection process. As technology develops, there is a shift from manual approaches to more efficient automated systems, utilizing computer vision algorithms, hardware such as Nvidia Jetson and Digital Camera. The YOLO algorithm shows good accuracy in overcoming defect detection in aluminum casting products, achieving a precision of 0.94, recall of 0.82, and mAP@0.5 of 0.90. The performance of the YOLO algorithm in detecting gas bubbles is 100 - 120 ms per frame from thestreaming camera so that the fps performance is 10 fps (frames per second).

Full Text:

PDF

References


Aust, J., & Pons, D. (2022). Comparative Analysis of Human Operators and Advanced Technologies in the Visual Inspection of Aero Engine Blades. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12042250

Bokovoy, A., Muravyev, K., & Yakovlev, K. (2019). Real-time Vision-based Depth Reconstruction with NVidia Jetson.

Boris Sekachev. (2023). Computer Vision Annotation Tool (CVAT) (2.8.2). Github. https://doi.org/10.5281/zenodo.4009388.

Bunyamin, H. (2020, August 1). Micro-average == Weighted macro-average. Https://Hbunyamin.Github.Io/Ml-2/Micro_and_Weighted_Macro_Averages/.

Chen, W., Li, Y., Tian, Z., & Zhang, F. (2023). 2D and 3D object detection algorithms from images: A Survey. In Array (Vol. 19). Elsevier B.V. https://doi.org/10.1016/j.array.2023.100305

Gao, F., Lin, J., Ge, Y., Lu, S., & Zhang, Y. (2020). A Mechanism and Method of Leak Detection for Pressure Vessel: Whether, When, and How. IEEE Transactions on Instrumentation and Measurement, 69(9), 6004–6015. https://doi.org/10.1109/TIM.2020.2969300

Gladkoff, S., Sorokina, I., Han, L., & Alekseeva, A. (2021). Measuring Uncertainty in Translation Quality Evaluation (TQE). http://arxiv.org/abs/2111.07699

Gowardipe, A. N., Deshmukh, A., Dimble, P., Deshmukh, A., & Garje, N. (2008). Leakage Testing Machine. International Research Journal of Engineering and Technology, 3957. www.irjet.net

Hidayatullah, P. (2021). Buku Sakti Deep Learning Computer Vision Menggunakan YOLO untuk Pemula.

Jeon, J., Jung, S., Lee, E., Choi, D., & Myung, H. (2021). Run Your Visual-Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a Micro Aerial Vehicle. IEEE Robotics and Automation Letters, 6(3), 5332–5339. https://doi.org/10.1109/LRA.2021.3075141

Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: Past, present, and future. Journal of Cognitive Neuroscience, 33(10), 2017–2031. https://doi.org/10.1162/jocn_a_01544

Mrinal Walia. (2022, October 31). Overfitting in Machine Learning and Computer Vision. Roboflow Blog. https://blog.roboflow.com/overfitting-machine-learning-computer-vision/

Pauline, E., Carreño-Alvarado, & Meza, G. R. (2020). Water Leak Detection by Termographic Image Analysis, In Laboratory Tests. 15. https://doi.org/10.3390/ecws-4-06440

Putri, A. S., & Primananda, F. (2021). Quality Control on Minimizing Defect Product on 20 OE Yarn. Jurnal Ilmiah Teknik Industri, 20(1), 81–88. https://doi.org/10.23917/jiti.v20i1.12443

Qi, M., Xu, Y., Li, J., Kang, Y., & Wulabieke, Z. (2021). Microstructure refinement and corrosion resistance improvement mechanisms of a novel Al-Si-Fe-Mg-Cu-Zn alloy prepared by ultrasonic vibration-assisted rheological die-casting process. Corrosion Science, 180. https://doi.org/10.1016/j.corsci.2020.109180

Suder, J. (2022). Parameters evaluation of cameras in embedded systems. Przeglad Elektrotechniczny, 98(9), 216–219. https://doi.org/10.15199/48.2022.09.50

Verma, U., Kalia, A., & Sood, S. (2024). A Comparative Analysis of Deep Learning Based Object Detection Models. In International Journal of Scientific Research & Engineering Trends (Vol. 10, Issue 3).

Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. http://arxiv.org/abs/2402.13616

Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. In Materials (Vol. 13, Issue 24, pp. 1–23). MDPI AG. https://doi.org/10.3390/ma13245755




DOI: https://doi.org/10.31884/jtt.v10i2.664

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JTT (Jurnal Teknologi Terapan)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

View Stats

 

 Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)