PERANCANGAN GIRDER PADA FLEKSIBEL GANRTY CRANE KAPASITAS 1 TON

Rachmad Imbang Tritjahjono, Ramadhan Ramadhan, Destri Muliastri, Casiman Sukardi, Yun Gemilang

Abstract


Lifting and transporting equipment is one of the keys to carrying out work in the manufacturing and construction industries. Due to limited access, various obstacles must be overcome in some working areas. A ganrty crane is an alternative lifting equipment that has high flexibility. This article reports the research results on the girder’s main components. This component gets direct contact with loading when lifting and rigging work is carried out. This research method was conducted by comparing manual calculation models and CAE using the Solidworkss Simulation software. From these two methods, this study yielded 23.091 and 25.54MPa for manual calculations and the finite element method, respectively. Furthermore, in the finite element method with direct contact loading, a stress of 40.52MPa is obtained. From the three stress calculations, it can be concluded that the safety factor has exceeded the requirements set out in the standard. Furthermore, utilizing the Goodman model, mitigating the possibility of fatigue failure also indicates a safe condition. Based on recent research reports, a potential self-healing is not yet possible to be recognized well especially for metals having a grain size of micron.

Full Text:

PDF

References


American Society of Mechanical Engineers.(ASME). (2004). ASME NOG-1-2004. Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder). ASME.

Ari, L., & Wibawa, N. (2020). DESAIN DAN ANALISIS TEGANGAN STRUKTUR CRANE KAPASITAS 10 TON MENGGUNAKAN METODE ELEMEN HINGGA Professional 2017 . Autodesk Inventor merupakan salah satu perangkat lunak pemodelan 3D. 4(2), 201–210.

Beham, A., Raggl, S., Karder, J., Werth, B., & Wagner, S. (2022). Dynamic Warehouse Environments for Crane Stacking and Scheduling. Procedia Computer Science, 200, 1461–1470. https://doi.org/10.1016/j.procs.2022.01.347

Berkovits, A., & Fang, D. (1993). An analytical master curve for Goodman diagram data. International Journal of Fatigue, 15(3), 173–180. https://doi.org/10.1016/0142-1123(93)90174-O

Brian, I., Adi, S., Munir, P. M., Mesin, J. T., Bandung, P. N., & Kunci, K. (2022). Analisisis tegangan struktur bridge crane kapasitas 2 ton dengan bantuan software ansys. 13–14.

buch1962 Se 0.3 Su [24].pdf. (n.d.).

Castro, J. C., Palafox, E. H., Gómez, L. H. H., Mendoza, G. S., Grijalba, Y. L., & López, P. R. (2019). Analysis of the structural girders of a crane for the license renewal of a BWR Nuclear Power Plant. Procedia Structural Integrity, 17, 115–122. https://doi.org/10.1016/j.prostr.2019.08.016

Heckel, T. K., & Christ, H. J. (2010). Low cycle fatigue life threshold for titanium aluminides. Advanced Engineering Materials, 12(11), 1142–1145. https://doi.org/10.1002/adem.201000193

Ileš, Š., Lazar, M., Kolonić, F., & Matuško, J. (2015). Stabilizing Model Predictive Control of a Gantry Crane Based on Flexible Set-Membership Constraints. IFAC-PapersOnLine, 48(23), 248–253. https://doi.org/10.1016/j.ifacol.2015.11.291

Jaafar, H. I., Mohamed, Z., Jamian, J. J., Abidin, A. F. Z., Kassim, A. M., & Ghani, Z. A. (2013). Dynamic Behaviour of a Nonlinear Gantry Crane System. Procedia Technology, 11(Iceei), 419–425. https://doi.org/10.1016/j.protcy.2013.12.211

Jefriansyah, J., & Ma’ruf, M. (2018). Analisis Struktur Pada Girder Overhead Crane Swl 30 Ton. Scientific Journal of Mechanical Engineering Kinematika, 3(1), 43–52. https://doi.org/10.20527/sjmekinematika.v3i1.5

Karder, J., Beham, A., Werth, B., Wagner, S., & Affenzeller, M. (2022). Integrated Machine Learning in Open-Ended Crane Scheduling: Learning Movement Speeds and Service Times. Procedia Computer Science, 200, 1031–1040. https://doi.org/10.1016/j.procs.2022.01.302

Liang, Y., Dong, B., Li, P., Zhang, K., & Gao, X. (2023). Prediction of overwintering crane population in Poyang Lake wetland based on RS and regression Model, China. Ecological Indicators, 149(March), 110183. https://doi.org/10.1016/j.ecolind.2023.110183

Mlikota, M., & Schmauder, S. (2020). Simulation-based Understanding of the Critical Resolved Shear Stress Relevance for the Fatigue Performance of Metallic Materials. March. https://doi.org/10.20944/preprints202003.0083.v1

Nakamura, J., & Nagayoshi, S. (2022). What can a line of sight tell us? Working with a gantry crane at 50 m above ground level. Procedia Computer Science, 207, 692–700. https://doi.org/10.1016/j.procs.2022.09.124

Patel, H., Upadhyay, D., & Patel, D. (2020). Design Optimization of Box Girder in Gantry Crane using Finite Element Analysis Software. 1906–1917.

Sajid, H. U., & Kiran, R. (2018a). Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels. Construction and Building Materials, 176, 129–134. https://doi.org/10.1016/j.conbuildmat.2018.05.018

Sajid, H. U., & Kiran, R. (2018b). Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels. Construction and Building Materials, 176(May), 129–134. https://doi.org/10.1016/j.conbuildmat.2018.05.018

Sowa, L., & Kwiatoń, P. (2017). Numerical Analysis of Stress Fields Generated in the Gantry Crane Beam. Procedia Engineering, 177, 218–224. https://doi.org/10.1016/j.proeng.2017.02.192

Su, J. C., Li, L., Chan, P. W., Zhou, Q. J., & Yang, H. L. (2023). Numerical simulation research on the overturning of gantry crane by downbursts. Heliyon, 9(8), e18641. https://doi.org/10.1016/j.heliyon.2023.e18641

Thomas, M., & Sawodny, O. (2020). A model to control self-erecting tower cranes with elastic structure. IFAC-PapersOnLine, 53(2), 8947–8952. https://doi.org/10.1016/j.ifacol.2020.12.1480

V.a. Kopnov. (1999). Fatigue life prediction of the metalwork of a travelling gantry crane. Engineering Failure Analysis, Volume 6,(Issue 3,), 131–141. https://doi.org/10.1016/S1350-6307(98)00041-7.%0A(http://www.sciencedirect.com/science/article/pii/S1350630798000417)

Vu, M. N., Lobe, A., Beck, F., Weingartshofer, T., Hartl-Nesic, C., & Kugi, A. (2022). Fast trajectory planning and control of a lab-scale 3D gantry crane for a moving target in an environment with obstacles. Control Engineering Practice, 126(February). https://doi.org/10.1016/j.conengprac.2022.105255

Weiss, V., Sessler, J., & Packman, P. (1963). Effect of several parameters on low cycle fatigue behavior. Acta Metallurgica, 11(7), 809–816. https://doi.org/10.1016/0001-6160(63)90020-8

Wibawa, L. A. N. (2020). Desain Dan Analisis Tegangan Struktur Crane Kapasitas 10 Ton Menggunakan Metode Elemen Hingga. Jurnal Muara Sains, Teknologi, Kedokteran Dan Ilmu Kesehatan, 4(2), 201. https://doi.org/10.24912/jmstkik.v4i2.7006

Xu, Z., Dong, B., Wei, Z., Lu, Z., Liu, X., & Xu, H. (2023). Study on habitat suitability change and habitat network of rare wintering cranes in important international wetlands. Ecological Indicators, 154(July), 110692. https://doi.org/10.1016/j.ecolind.2023.110692

Zhang, S., van Dijk, N., & van der Zwaag, S. (2020). A Review of Self-healing Metals: Fundamentals, Design Principles and Performance. Acta Metallurgica Sinica (English Letters), 33(9), 1167–1179.




DOI: https://doi.org/10.31884/jtt.v9i2.610

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JTT (Jurnal Teknologi Terapan)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

View Stats

 

 Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)