ALGORITMA K-NEAREST NEIGHBOR (K-NN) DAN SINGLE LAYER PERCEPTRON (SLP) UNTUK KLASIFIKASI PENYAKIT ALZHEIMER

Novi Rustiana Dewi, Anita Desiani, Fitri Salamah, Yuli Andriani

Abstract


Alzheimer's disease is a brain disorder that causes memory loss, decreased thinking skills, communication difficulties, and behavioral changes. Early detection of this disease is very important for proper treatment and planning of medical needs. However, there is currently no drug that can cure Alzheimer's. Therefore, this study aims to develop accurate early predictions for Alzheimer's disease by comparing two algorithms: K-Nearest Neighbor (KNN) and Single Layer Perceptron (SLP) using the percentage split method. The results showed that testing using the K-NN algorithm resulted in an accuracy of 96%. The precision and recall values for class 0 (nondemented) are 93% and 100%, respectively, while for class 1 (demented) are 100% and 91%. On the other hand, testing using the SLP algorithm produces an accuracy of 99%. The precision and recall values for class 0 (nondemented) are 97% and 100% respectively, while for class 1 (demented) are 100% and 98%. Based on a comparison of the values for accuracy, precision, and recall, as well as the performance of the two classification methods, it can be concluded that the implementation of the Single Layer Perceptron algorithm provides the best prediction for early detection of Alzheimer's disease. These findings provide potential use of this algorithm in facilitating early diagnosis and timely intervention for patients with Alzheimer's.


Full Text:

PDF

References


Agung Riansa, D., Widodo, Prasetya Adhi, B., 2019. Pengenalan Tanda Tangan Menggunakan Algoritma Single Layer Perceptron. PINTER J. Pendidik. Tek. Inform. dan Komput. 3, 1–6. https://doi.org/10.21009/pinter.3.1.1

Akbar, F., Rahmaddeni, 2022. Jurnal Politeknik Caltex Riau Komparasi Algoritma Machine Learning untuk Memprediksi Penyakit Alzheimer. J. Komput. Terap. 8, 236–245.

Aulia, R., 2021. Dimensia Serang 55 Juta Penduduk, WHO: Usia 20 hingga 40 Tahun Bisa alami Penurunan Daya Ingat. URL https://indobalinews.pikiran-rakyat.com/lifestyle/pr-882522175/dimensia-serang-55-juta-penduduk-who-usia-20-hingga-40-tahun-bisa-alami-penurunan-daya-ingat

Baharuddin, M.M., Azis, H., Hasanuddin, T., 2019. Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca. Ilk. J. Ilm. 11, 269–274. https://doi.org/10.33096/ilkom.v11i3.489.269-274

Fansyuri, M., 2020. Analisa algoritma klasifikasi k-nearest neighbor dalam menentukan nilai akurasi terhadap kepuasan pelanggan (study kasus pt. Trigatra komunikatama). Humanika J. Ilmu Sos. Pendidikan, dan Hum. 3, 29–33.

Febriana, F., Riva, L.S., Salomo, R., Piero, S., Ikramsyah, M.A., Santoni, M.M., 2021. Perbandingan Klasifikasi Naive-Bayes dan KNN untuk Mengidentifikasi Jenis Buah Apel dengan Ekstraksi Ciri LBP dan HSV. Semin. Nas. Mhs. Ilmu Komput. dan Apl. 191–201.

Ilham, A., 2020. Hybrid Metode Boostrap Dan Teknik Imputasi Pada Metode C4-5 Untuk Prediksi Penyakit Ginjal Kronis. Statistika 8, 43–51.

Istighfarizky, F., Sanjaya ER, N.A., Widiartha, I.M., Astuti, L.G., Putra, I.G.N.A.C., Suhartana, I.K.G., 2022. Klasifikasi Jurnal menggunakan Metode KNN dengan Mengimplementasikan Perbandingan Seleksi Fitur. JELIKU (Jurnal Elektron. Ilmu Komput. Udayana) 11, 167. https://doi.org/10.24843/jlk.2022.v11.i01.p18

Kurnia, F., Kom, S., Kurniawan, J., St, I.F., 2019. Klasifikasi Keluarga Miskin Menggunakan Metode K- Nearest Neighbor Berbasis Euclidean Distance 230–239.

Mada Abdillah, T., 2017. Rancangan Bangun Sistem Pengklasifikasi Kecepatan Maksimum Kereta Api pada Jalur Klakah-Pasirian Menggunkan Metode Single Layer Perceptron. Digit. Repos. Univ. Jember.

Muhammad Varriel Avenazh Nizar, Sirajuddin Hawari, Ahmad Nur Ihsan Purwanto, 2022. Membandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Dengan Opencv Pada Pengenalan Wajah. Jural Ris. Rumpun Ilmu Tek. 1, 107–114.

Najwa, M., Warsito, B., Ispriyanti, D., 2017. Pemodelan Jaringan Syaraf Tiruan Dengan Algoritma One Step Secant Backpropagation dalam Return Kurs Rupiah Terhadap Dolar Amerika Serikat. J. Gaussian 6, 61–70.

Nasution, D.A., Khotimah, H.H., Chamidah, N., 2019. Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Comput. Eng. Sci. Syst. J. 4, 78. https://doi.org/10.24114/cess.v4i1.11458

Pratama, Y., Roberto Tampubolon, A., Diantri Sianturi, L., Diana Manalu, R., Frietz Pangaribuan, D., 2019. Implementation of Sentiment Analysis on Twitter Using Naïve Bayes Algorithm to Know the People Responses to Debate of DKI Jakarta Governor Election. J. Phys. Conf. Ser. 1175. https://doi.org/10.1088/1742-6596/1175/1/012102

Rismala; Ali, I., Rizki Rinaldi, A., 2023. Penerapan Metode K-Nearest Neighbor untuk Prediksi 7, 585–590.

Sa’dan, A., Haryanto, H., Astuti, S., Rahayu, Y., 2019. Agen Cerdas Berbasis Fuzzy Tsukamoto pada Sistem Prediksi Banjir. Eksplora Inform. 8, 104–111. https://doi.org/10.30864/eksplora.v8i2.154

Safaat, M., Sahari, A., Lusiyanti, D., 2020. Implementasi Metode K-Nearest Neighbor Untuk Mengklasifikasi Jenis Penyakit Katarak. J. Ilm. Mat. Dan Terap. 17, 92–99. https://doi.org/10.22487/2540766x.2020.v17.i1.15184

Sartika, D., Sensuse, D.I., 2017. Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. J. Tek. Inform. Dan Sist. Inf. 1, 151–161.

Wildah, S.K., Agustiani, S., S, M.R.R., Gata, W., Nawawi, H.M., 2020. Deteksi Penyakit Alzheimer Menggunakan Algoritma Naïve Bayes Dan Correlation Based Feature Selection. J. Inform. 7, 166–173. https://doi.org/10.31294/ji.v7i2.8226

Yuli Mardi, 2019. Data Mining : Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatika. J. Edik Inform. 2.




DOI: https://doi.org/10.31884/jtt.v9i2.407

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JTT (Jurnal Teknologi Terapan)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

View Stats

 

 Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)