PENGARUH JENIS ACTIVATED FLUX DAN VARIASI KUAT ARUS PADA PENGELASAN A-TIG DISSIMILAR MATERIAL TERHADAP KEDALAMAN PENETRASI, KEKERASAN, STRUKTUR MIKRO DAN LAJU KOROSI

Imam Khoirul Rohmat, Moch Iqbal Ramadhan, Dika Anggara

Abstract


The TIG welding process has shallow penetration. The addition of activated flux can increase the depth of penetration of the weld, which is called A-TIG welding, so this study to analyze the effect of the activated flux type and current on the depth of penetration, hardness, microstructure, and corrosion rate. This study used SUS 304 and A36 materials with a thickness of 6 mm which are welded using the A-TIG welding process with variations of activated flux Fe2O3, Cr2O3 and variations in the current strength of 100 amperes and 120 amperes. To find out the results of these variations, this study was tested by macro, hardness, microstructure, and corrosion rate tests. The results of the study on variations in the type of activated flux and variations in current resulted penetration depth of 3.6 mm found in activated flux Cr2O3 with 120 amperes and penetration depth in activated flux Fe2O3 with a value of 2.43 mm on 100 amperes. Then the highest hardness value was found in activated flux Fe2O3 and 120 amperes with a value of 471.48 HVN, and the lowest is in Cr2O3 ampere 100 with a value of 398.16.HVN. The micro test results in a phase change from pearlite, ferrite, and austenite to martensite in the weld metal. And to test the corrosion rate on activated flux Fe2O3 and a current of 120 amperes with a value of 0.24931 mm/year, the activated flux Cr2O3 and a current of 100 amperes with a value of 0.090114 mm/year.

Full Text:

PDF

References


AHMADI, E., & EBRAHIMI, A. R. (2013). THE EFFECT OF ACTIVATING FLUXES ON 316L STAINLESS STEEL WELD JOINT CHARACTERISTIC IN TIG WELDING USING THE TAGUCHI METHOD . JOURNAL OF ADVANCED MATERIALS AND PROCESSING, 1, 55-62.

AWS. (2011). AWS Welding Handbook (9th ed.). Miami: American Welding Society.

Chen, H. C., Ng, F. L., & Du, Z. (2019). Hybrid laser-TIG welding of dissimilar ferrous steels: 10 mm thick low carbon steel to 304 austenitic stainless steel. Journal of Manufacturing Processes, 324-336.

Kulkarni, A., Dwivedi, D. K., & Vasudevan, M. (2018). Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint. Materials Science & Engineering A, 309-323.

Mvola, B., Kah, P., & Martikainen, J. (2014). DISSIMILAR FERROUS METAL WELDING USING ADVANCED GAS METAL ARC WELDING PROCESSES. Advance Material Science, 125-137.

Ojahan, T. (2017). Analisis Pengaruh Parameter Pengelasan GTAW pada Stainless Steel AISI 304 Terhadap Sifat Mekanis dan Struktur Mikro.

Rachmadhani, A. F. (2019). Pengaruh Heat Input Pengelasan GTAW Pada. Tugas Akhir dari Institut Teknologi Sepuluh.

Rodrigues, A., & Loureiro, A. (2015). Effect of shielding gas and activating flux on weld bead geometry in tungsten inert gas welding of austenitic stainless steels. Science and Technology of Welding and Joining, 10, 760-765.

Saputra, L. I., Budiarto, U., & Jokosisworo, S. (2019). Analisa Perbandingan Kekuatan Tarik, Impak, dan Mikrografi Pada Sambungan Las Baja SS 400 Pengelasan SMAW (Shielded Metal Arc Welding) Akibat dengan Variasi Jenis Kampuh dan Posisi Pengelasan. JURNAL TEKNIK PERKAPALAN, 7, 215-226.




DOI: https://doi.org/10.31884/jtt.v8i2.375

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JTT (Jurnal Teknologi Terapan)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

View Stats

 

 Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)